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Abstract
In 2012, we reported 30 compound data sets and/or programs developed in our
laboratory in a data article and made them freely available to the scientific
community to support chemoinformatics and computational medicinal
chemistry applications. These data sets and computational tools were provided
for download from our website. Since publication of this data article, we have
generated 13 new data sets with which we further extend our collection of
publicly available data and tools. Due to changes in web servers and website
architectures, data accessibility has recently been limited at times. Therefore,
we have also transferred our data sets and tools to a public repository to ensure
full and stable accessibility. To aid in data selection, we have classified the data
sets according to scientific subject areas. Herein, we describe new data sets,
introduce the data organization scheme, summarize the database content and
provide detailed access information in ZENODO (doi: 10.5281/zenodo.8451
and ).doi:10.5281/zenodo.8455
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Introduction
The compound data sets reported in our original article1 and the 
new data sets presented herein have resulted from research in the  
chemoinformatics and medicinal chemistry area and have mostly 
been generated from public domain repositories of compound struc-
tures and activity data. In addition, software tools made publicly 
available have also been developed in our laboratory1. Data sets 
reported in the scientific literature in the context of computational 
method development and evaluation are often not publicly available, 
which limits the reproducibility of computational investigations and 
comparisons of different computational methods. We believe that 
it is important to provide such data to the scientific community to 
further improve the transparency and credibility of computational 
studies and support method development. In addition to the data 
sets designed for the development and evaluation of computational 
methods, we also make available data sets that were generated as a 
resource and knowledge base for medicinal chemistry applications. 
Our data sets and tools are provided via the ZENODO platform 
(https://zenodo.org/) to ensure easy and stable access.

Materials and methods
The data sets reported herein were predominantly generated from 
ChEMBL2,3, BindingDB4 and PubChem5 (a few exceptions are 
specified in the original data article1). Compound structures are 
represented as SMILES6 strings or SD files7. Activity information 
and other (data set-dependent) annotations are provided in the indi-
vidual data files. For software tools (written in different languages), 
the source code is also made available.

Data description
Table 1 provides the updated list and classification of all freely avail-
able data sets and programs. Entries were organized according to the 
following scientific subject areas: data sets for structure-activity rela-
tionship (SAR) and structure-selectivity relationship (SSR) analysis, 
SAR visualization (SAR_VZ), and virtual screening via similarity 
searching or machine learning (VS_ML). In addition, the programs 
are provided separately (PROG). Data sets and programs are con-
tained in separate ZENODO deposition sets with a unique reference. 
Three matched molecular pair (MMP)-based data sets also included 
in our update have recently been reported and described in detail8. 
Entries 1–30 in Table 1 represent the data sets and programs that we 
initially provided via our website1 and entries 31–43 represent new 
data sets. In the following, the new data sets are described:

Entry 31
50 compound activity classes (AC) are prioritized for the evaluation 
of scaffold hopping potential in ligand-based virtual screening38. 
These AC contain the largest proportion of scaffold pairs with largest 
chemical inter-scaffold distances38 that can be derived from current 
bioactive compounds and hence present challenging test cases for 
scaffold hopping analysis.

Entry 32
596 SAR transfer series with regular potency progression  
(SAR-TS-RP) are extracted from 61 AC39. Each SAR-TS-RP rep-
resents two compound series with different core structures and 
pairwise corresponding substitutions that yield comparable potency 

progression against a given target. These series provide a knowl-
edge base for the analysis and prediction of SAR transfer events.

Entry 33
Four sets of molecular scaffolds (with each scaffold representing 
more than ten compounds) are provided that are active against a 
single target (ST), multiple targets from the same family (SF), or 
multiple targets from different families (MF)40. Data sets are sep-
arately assembled for different types of potency measurements  
(i.e., K

i
 and IC

50
 values) and provide a resource of scaffolds rep-

resenting compounds with varying degrees of target promiscuity.

Entry 34
Two multi-target compound data sets consist of confirmed screen-
ing hits41. Each set contains compounds with single-, dual-, and 
triple-target activity, or no activity. These data provide test cases 
for machine learning or other approaches to differentiate between 
compounds with overlapping yet distinct activity profiles.

Entry 35
Four multi-target compound data sets are provided42. Each set con-
tains compounds tested in three different assays. Compounds are 
organized into eight different subsets according to their activity pro-
files, i.e., single-, dual-, and triple-target activity, or no activity. In 
addition, three multi-mechanism compound sets are designed42. In 
the latter case, compounds are organized into four subsets accord-
ing to their mechanism-of-action. These data sets also represent test 
cases for machine learning to distinguish compounds with different 
activity profiles or mechanisms.

Entry 36
2337 non-redundant compound series matrices (CSMs) are gener-
ated covering compounds active against a wide spectrum of targets43. 
Each matrix contains at least two analogous matching molecular 
series (MMS) with structurally related yet distinct cores. A matrix 
consists of known active compounds and structurally related virtual 
compounds and hence provides suggestions for compound design.

Entry 37
128 target-based data sets are assembled that consist of at least  
100 compounds with precisely specified equilibrium constants (K

i
 

values) below 1 µM for human targets44. These high-confidence 
activity data sets provide a sound basis for SAR exploration.

Entry 38
30,452 and 45,607 target-based MMS with K

i
 and IC

50
 values, 

respectively, are extracted from bioactive compounds45.

Entry 39
221 scaffolds are identified that only occur in approved drugs but 
are not found in currently available bioactive compounds46. Accord-
ingly, these scaffolds have been termed drug-unique scaffolds.

Entry 40
92,734 MMPs are generated from 435 AC on a basis of retrosyn-
thetic rules47. These MMPs consider chemical reaction information 
and should be useful for practical medicinal chemistry applications.
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Table 1. Data sets and programs.

Entry Year Subject area
index label Description

1[9] 2007 VS_ML_1 9 activity classes (AC) with increasing structural diversity

2[9] 2007 VS_ML_2 ~1.44 million ZINC compounds used for various virtual screening trials

3[10] 2007 PROG_1 Molecular similarity histogram filtering

4[11] 2007 SSR_1 4 SD files with 26 selectivity sets; compounds are annotated with selectivity values for different targets

5[12] 2008 SSR_2 7 compound selectivity sets containing 267 biogenic amine GPCR antagonists

6[13] 2008 SSR_3 18 selectivity sets for targets from 4 families

7[14] 2008 VS_ML_3 25 sets of compounds of increasing complexity and size

8[15] 2009 VS_ML_4 242 hERG inhibitors

9[16] 2009 SSR_4 243 ionotropic glutamate ion channel antagonists

10[17] 2009 PROG_2 Combinatorial analog graph (CAG) program with a sample set consisting of 51 thrombin inhibitors

11[18] 2009 VS_ML_5 20 AC from the literature and 15 AC from the Molecular Drug Data Report

12[19] 2010 VS_ML_6 8 AC

13[20] 2010 PROG_3 Program to generate target selectivity patterns of scaffolds

14[21] 2010 PROG_4 Multi-target CAGs (see also entry 10) with a sample set containing 33 kinase inhibitors

15[22] 2010 PROG_5 SARANEA

16[23] 2010 PROG_6 3D activity landscape program with a sample set containing 248 cathepsin S inhibitors

17[24] 2010 SAR_1 2 sets of MMPs from BindingDB and ChEMBL

18[25] 2010 PROG_7 Similarity-potency tree (SPT) program with a sample set containing 874 factor Xa inhibitors

19[26] 2010 VS_ML_7 17 target-directed compound sets; each set contains a minimum of 10 distinct scaffolds and each 
scaffold represents 5 compounds

20[27] 2011 SAR_VZ 10,489 malaria screening hits

21[28] 2011 SAR_2 458 target-based sets with scaffolds and scaffold hierarchies

22[29] 2011 SAR_VZ 4 sets of compounds active against 3 or 4 targets

23[30] 2011 SAR_VZ 881 factor Xa inhibitors

24[31] 2011 VS_ML_8 50 AC prioritized for similarity searching

25[32] 2011 VS_ML_9 25 data sets from successful ligand-based virtual screening applications

26[33] 2011 SAR_3 26 conserved scaffolds in activity profile sequences of length 4

27[34] 2011 PROG_8 Scaffold distance function

28[35] 2011 SAR_4 2 sets of compounds with multiple Ki or IC50 measurements against the same targets that differed within 
1 order of magnitude

29[36] 2012 SAR_VZ 4 AC

30[37] 2012 SAR_5 5 sets of different types of activity cliffs

31[38] 2012 VS_ML_10 50 AC for scaffold hopping analysis

32[39] 2012 SAR_6 61 AC consisting of SAR transfer series with regular potency progression

33[40] 2013 SAR_7 4 activity measurement type-dependent sets of scaffolds

34[41] 2013 VS_ML_11 2 multi-target compound sets

35[42] 2013 VS_ML_12 4 multi-target compound sets and 3 multi-mechanism sets

36[43] 2013 SAR_8 2337 compound series matrices

37[44] 2013 SAR_9 128 AC containing ≥100 compounds with Ki values

38[45] 2014 SAR_10 30,452 and 45,607 target-based MMS with Ki and IC50 values, respectively

39[46] 2014 SAR_11 221 drug-unique scaffolds

40[47] 2014 SAR_12 92,734 MMPs based upon retrosynthetic rules for 435 AC

41[8] 2014 SAR_13 20,073 and 25,297 MMP-based activity cliffs with Ki and IC50 values, respectively

42[8] 2014 SAR_14 4 activity measurement type-dependent sets of SAR transfer series with approximate or regular 
potency progression

43[8] 2014 SAR_15 169,889 and 240,322 transformation size-restricted MMPs based upon retrosynthetic rules with Ki and 
IC50 values, respectively

Data entries are organized according to scientific subject areas: structure-activity relationship (SAR) and structure-selectivity relationship (SSR) analysis, 
SAR visualization (SAR_VZ), virtual screening via similarity searching or machine learning (VS_ML), and programs (PROG). References in the Entry column 
provide the original publication introducing the program and/or data set. Program entries are described in more detail in Table 2 of our original data 
article1. The new compound data sets 31–43 are discussed in the text. Programs and data sets reported herein have been separately deposited in 
ZENODO for access and download.
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Entry 41
20,073 and 25,297 MMP-based activity cliffs (i.e. pairs of structur-
ally analogous compounds with an at least 100-fold difference in 
potency) are extracted from specifically active compounds based 
upon K

i
 and IC

50
 values, respectively8. The MMP-based activity 

cliffs provide a large knowledge base for SAR analysis.

Entry 42
157 and 513 MMP-based SAR transfer series with approximate 
potency progression plus 60 and 322 SAR transfer series with reg-
ular potency progression based upon K

i
 and IC

50
 values, respec-

tively, are isolated from bioactive compounds. These transfer series 
are active against individual targets8. Similar to MMP-based activ-
ity cliffs, SAR transfer series provide a resource for SAR analysis 
and compound design.

Entry 43
169,889 and 240,322 transformation size-restricted MMPs based 
upon retrosynthetic rules with K

i
 and IC

50
 values, respectively, are 

systematically extracted from available AC8. Different from the  
retrosynthetic rule-based MMPs presented above, applied transfor-
mation size-restrictions ensure that chemical changes distinguishing 
compounds in pairs are small.

Summary
Herein we have provided an updated release of data sets and pro-
grams for chemoinformatics and medicinal chemistry that we 
make freely available. In total, 13 new data sets are introduced. 

Transferring all data entries in an organized form to the ZENODO 
platform makes them easily accessible. We hope that our current 
release might be of interest and helpful to many investigators in 
academia and the pharmaceutical industry.
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